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country and connect two vertices by an edge if and only if they correspond to
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By adding edges to the dual we may assume the dual is a triangulation. Thus
the Four Color Problem can be rephrased as:

Conjecture 2 The vertices of a triangulation of S2 can be four colored.

These conjectures (now theorem) was proved by Appel and Haken in the 1970’s.
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Our first goal is reformulating Conjecture 2 in terms of branched covers. For
f : S2 → S2 we define:

Definition 3 f is called a cover if for any point p ∈ S2 there is an open disk
D 3 p so that f−1(D) is a collection of disks {Dj}n

j=1 and for each j, f |Dj
is

a homeomorphism.

Definition 4 f is called a branched cover if for any point p ∈ S2 there is an
open disk D 3 p so that f−1(D) is a collection of disks {Dj}n

j=1 and for each
j, f |Dj

is modelled on z → zn.

n is called the local degree and the image of the points with local degree greater
than 1 is called the branch set, denoted branch(f). branch(f) is finite.

The maps z → zn and their compositions provide examples of branched cover
f : S2 → S2 with arbitrarily many branch points.
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Let f : S2 → S2 be a branch cover and suppose that branch(f) ⊂ T (0)

stan (the
vertices of Tstan). Then we claim:

Proposition/definition 5 f−1(Tstan) is a triangulation of S2. A triangula-
tion obtained in this way is called a lift, denoted T̃ .

The degree of a vertex v, deg(v), is the number of edges adjacent to v.

Proposition 6 If T̃ is a lift then:

1. The vertices of T̃ are four colorable.

2. The degree of every vertex of T̃ is divisible by 3.

Näıvely we might ask if these statements are “if and only if” statements. (No!)
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Notice that the coloring is given in a particularly simple form: say the colors
are g, r, b, y, suppose the color at a vertex p is g. Then around p the colors are
r, b, y, r, b, y, r, b, y, r,... ordered cyclically.

Thus four coloring a lift is easy.
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Main Theorems

Definition 7 We say that a triangulations T embeds in T̃ (denoted T ⊂ T̃ ) if
the vertices (resp. edges) of T are a subset of the vertices (resp. edges) of T̃ .

Theorem 8 The vertices of a triangulation T are four-colorable if and only if
T embeds in a lift T̃ .

Theorem 9 A triangulation is a lift if and only if the degree of each vertex is
divisible by 3. In that case, we say that the triangulation is 3-divisible.
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T is four colorable implies T embeds in a lift: suppose that the vertices of T
are four colorable. Any four coloring defines a map to (S2, Tstan) by sending
each triangle to the triangle of Tstan with the same colors. Endow the two
copies of S2 with an orientation. If f restricted to a triangle F is orientation
reversing, subdivide F into 3 triangles. This will ensure the map is orientation
preserving on all triangles. It is now straight forward to see that the map is a
branched cover; thus we embedded T in a lift.

Note: the only move necessary is:

⇒



Proof of Thm 9: lift implies 3-divisible: this was established in Proposition 6.



Proof of Thm 9: lift implies 3-divisible: this was established in Proposition 6.

3-divisible implies lift: assume T is 3-divisible. Pick one triangle of T and map
it to some triangle of Tstan. Let v be a vertex of T and (imitating the process
of analytic continuation) we map the triangles around v to (S2, Tstan); this is
possible since 3|deg v. A map defined in that way is a branched cover.



Proof of Thm 9: lift implies 3-divisible: this was established in Proposition 6.

3-divisible implies lift: assume T is 3-divisible. Pick one triangle of T and map
it to some triangle of Tstan. Let v be a vertex of T and (imitating the process
of analytic continuation) we map the triangles around v to (S2, Tstan); this is
possible since 3|deg v. A map defined in that way is a branched cover.

It is not clear that f is well-defined. To show that f is well defined we use
a monodromy argument. Assume there exists a cycle c along which f is ill-
defined. We may assume c is embedded. We then show that after removing
one triangle from D, f is still inconsistent along the boundary. Thus we finally
arrive at a disk of area zero,which is absurd.



An aside: the color of edges

It is well-known that four coloring vertices of a triangulation is equivalent to
thee-coloring its edges in such way that around each triangle all three colors
appear. But what are these colors? Let T be a four-colored triangulation and
let f : (S2, T ) → (S2, Tstan) be the map constructed above.



An aside: the color of edges

It is well-known that four coloring vertices of a triangulation is equivalent to
thee-coloring its edges in such way that around each triangle all three colors
appear. But what are these colors? Let T be a four-colored triangulation and
let f : (S2, T ) → (S2, Tstan) be the map constructed above.

By the Riemann Uniformization Theorem f is conformal. T̃ (0) maps to T (0)

stan,

and after picking an order on T (0)

stan we may assume these points are (in order)
at 0, 1, ∞, and z. This uniquely defines z.
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It is well-known that four coloring vertices of a triangulation is equivalent to
thee-coloring its edges in such way that around each triangle all three colors
appear. But what are these colors? Let T be a four-colored triangulation and
let f : (S2, T ) → (S2, Tstan) be the map constructed above.

By the Riemann Uniformization Theorem f is conformal. T̃ (0) maps to T (0)

stan,

and after picking an order on T (0)

stan we may assume these points are (in order)
at 0, 1, ∞, and z. This uniquely defines z.

Let T be the ideal tetrahedron with vertices 0, 1,∞, z. The six edges of T has
3 dihedral angles (say α, β, and γ) with α + β + γ = π. Lifting them gives a
3-coloring of the edges. Thus α, β, and γ are the correct colors.
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We saw that an embedding in a lift can be obtained using only the move:

⇒

• Let M be the incidence matrix (rows = vertices, columns = faces).

• Let
−→
b a vector so that bi is the mod-3 residue of the ith vertex of T (0).

Solve: M−→v +
−→
b = 0 mod 3. Then after subdividing the faces for which vj = 1,

all the residues are 0. Done.

An example: Haewood’s Map

In 1879 Kempe proved the Four Color Theorem; in 1890 Haewood found the
mistake in the proof. He constructed a 25-country map as a counterexample to
Kempe’s argument (but not to the theorem!). We ran the algorithm, and the
results are given in the handout.
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Next we consider a bigger map called Moore’s Map. It has 341 countries and
678 border triangles. In order to look for a solution we use genetic algorithm,
that is:

1. Choose vectors {−→vi}population
i=1 .

2. For each i, check how many of the conditions M−→vi =
−→
b hold. This number

(between 0 and 341) is called the fitness of vi.

3. Keep only the fit vectors; use them to generate new vectors by means of
crossover (mixing entries of two vectors) and mutation.
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Finally, we try to improve the genetic algorithm by using a geometric genetic
algorithm:

1. We replace the crossover function by a function that keeps the all the entries
of one vector and “inject” the entries from another vector arranged on a
disk (recall that the coordinates of −→vi correspond to faces of T ).

2. We replace the fitness function by a cost function: the sum up the distances
between equations [= vertices of T ] of M−→vi =

−→
b that do not hold.

We ran the generic genetic algorithm for 1,500–2,500 generations with popu-
lation size 1,000, and got the fitness to be 315–320. The geometric genetic
algorithm runs a little slower, so we allowed only 500 generations (same popu-
lation size). Each run gave fitness of 324–331, and even higher.

However, keep in mind that this is still work in progress. We still need to
optimize the generic genetic algorithm and the geometric genetic algorithm
(find the optimal population size, amount of mutation, etc.).
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