Coxeter groups, simplicial complexes and boundaries

Tetsuya HOSAKA

Definition. A Coxeter group is a group W having a presentation

$$\langle S | (st)^{m(s,t)} = 1 \text{ for } s, t \in S \rangle,$$

where S is a finite set and $m: S \times S \to \mathbb{N} \cup \{\infty\}$ is a function satisfying the following conditions:

- (1) m(s,t) = m(t,s) for all $s,t \in S$.
- (2) m(s, s) = 1 for all $s \in S$, i.e., $s^2 = 1$.
- (3) $m(s,t) \ge 2$ for all $s \ne t \in S$.

The pair (W, S) is called a Coxeter system.

If, in addition,

(4)
$$m(s,t) = 2$$
 or ∞ for all $s \neq t \in S$,

then (W, S) is said to be right-angled.

Let (W, S) be a Coxeter system. For a subset $T \subset S$, W_T is defined as the subgroup of W generated by T, and called a *parabolic subgroup*. It is known that the pair (W_T, T) is also a Coxeter system.

$$W = \left\{ \left. \{ s_1, s_2, s_3 \} \right| \begin{array}{l} s_1^2 = s_2^2 = s_3^2 = 1 \\ (s_1 s_2)^2 = 1 \\ (s_1 s_3)^3 = 1 \end{array} \right\} : Coxeter group$$

(W, 15,,52,52): Coxeter system

Coxeter diagram

Coxeter mattix

Definition. Let (W, S) be a Coxeter system. We define a simplicial complex L(W, S) by the following conditions:

- (1) the vertex set of L(W, S) is S, and
- (2) for each nonempty subset T of S,

T spans a simplex of L(W, S) if and only if W_T is finite.

For each nonempty subset T of S, $L(W_T,T)$ is a subcomplex of L(W,S).

L(W, S)

Definition. A simplicial complex L is called a *flag complex*, if for each vertex subset $T \subset L^0$ such that $|s,t| \in L$ for any $s \neq t \in T$, T spans a simplex of L.

Remark.

- (1) If (W, S) is a right-angled Coxeter system, then L(W, S) is a flag complex.
- (2) For a flag complex L, there exists a right-angled Coxeter system (W, S) such that L(W, S) = L.
- (3) For any simplicial complex K, the barycentric subdivision sd K is a flag complex.

The following problem is open.

Problem. For any simplicial complex L, is there a Coxeter system (W, S) such that L(W, S) = L?

Definition. Let (W, S) be a Coxeter system.

We define a cell complex $\Sigma(W, S)$ as follows:

- (1) In the case W is finite, $\Sigma(W, S)$ is the convex hull of the Cayley graph of W with respect to S in $\mathbb{R}^{|S|}$.
- (2) In general, the vertex set of $\Sigma(W, S)$ is W and

$$\Sigma(W,S) = \bigcup \{w\Sigma(W_T,T) \mid w \in W, \ T \subset S, \ W_T \text{ is finite}\}.$$

We note that the 1-skeleton of $\Sigma(W, S)$ is the Cayley graph of (W, S).

Moussong proved that $\Sigma(W, S)$ with the natural metric is a CAT(0) space. The CAT(0) space $\Sigma(W, S)$ can be compactified by adding its boundary $\partial \Sigma(W, S)$.

$$\partial \Sigma(W, S) = \{ \xi : [0, \infty) \to \Sigma(W, S) \text{ geodesic ray } | \xi(0) = x_0 \}$$

The boundary $\partial \Sigma(W, S)$ is called the *boundary* of the Coxeter system (W, S). It is unknown whether the following conjecture holds.

Rigidity Conjecture (Dranishnikov).

Isomorphic Coxeter groups will have homeomorphic boundaries.

Definition. Let X be a compact metric space and let G be an abelian group. The cohomological dimension of X with respect to G is defined as

 $\dim_G X = \sup\{i \mid \check{H}^i(X, A; G) \neq 0 \text{ for some closed subset } A \subset X\},$ where \check{H}^* denote the Čech cohomology.

Remark.

- (1) If the dimension of X is finite, then $\dim X = \dim_{\mathbb{Z}} X$.
- (2 If X is a polyhedron or manifold, then for any non-trivial abelian group G, dim $X = \dim_G X$.

Theorem (Pontoryagin, Kuzminov, Dranishnikov)

For any $n \in \mathbb{N}$ there exists a compact metric space X_n such that $\dim X_n = n$ and $\dim_{\mathbb{Q}} X_n = 1$.

n = 2 Pontoryagin (1930's)

n = 3 Kuzminov (1960's)

 $n \ge 4$ Dranishnikov (1980's)

Problem (Dranishnikov)

For each $n \in \mathbb{N}$, does there exist a Coxeter system (W, S) such that $\dim \partial \Sigma(W, S) = n$ and $\dim_{\mathbb{Q}} \partial \Sigma(W, S) = 1$?

Fact:

$$H^*(W;RW) \cong H_c^*(\Sigma(W,S);R) \cong \check{H}^{*-1}(\partial \Sigma(W,S);R),$$

where H_c^* and \check{H}^* denote the cohomology with compact supports and the reduced Čech cohomology, respectively.

Theorem (Bestvina and Mess 1991).

Let R a commutative ring with 1. Then

$$\dim_R \partial \Sigma(W, S) = \operatorname{vcd}_R W - 1,$$

where $\operatorname{vcd}_R W$ is the *virtual cohomological dimension of* W *over* R, i.e.,

$$\operatorname{vcd}_R W = \sup\{i \mid H^i(W; RW) \neq 0\}.$$

Remark.

$$\dim_R \partial \Sigma(W, S) = \operatorname{vcd}_R W - 1$$

$$= \sup\{i \mid H^i(W; RW) \neq 0\} - 1$$

$$= \sup\{i \mid \check{H}^i(\partial \Sigma(W, S); R) \neq 0\}$$

Theorem (Davis 1998). For a Coxeter system (W, S),

$$\begin{split} H^*(W;RW) \big(&\cong H^*_c(\Sigma(W,S);R) \cong \check{H}^{*-1}(\partial \Sigma(W,S);R) \big) \\ &\cong \bigoplus_{\substack{T \subset S \\ W_T \text{ is finite}}} \left(\mathbb{Z}(W^T) \otimes \check{H}^{*-1}(L(W_{S\backslash T},S \backslash T);R) \right), \end{split}$$

where \tilde{H}^* denotes the reduced cohomology and $\mathbb{Z}(W^T)$ is the free abelian group on W^T .

For each $w \in W$,

$$S(w) := \{ s \in S \, | \, \ell(ws) < \ell(w) \},$$

where $\ell(w)$ is the minimum length of word in S which represents w. For each subset T of S,

$$W^T := \{ w \in W \, | \, S(w) = T \}.$$

Theorem (H 2001). For a Coxeter system (W, S),

$$H^*(W;RW) \big(\cong H_c^*(\Sigma(W,S);R) \cong \check{H}^{*-1}(\partial \Sigma(W,S);R) \big)$$

$$\cong \check{H}^{*-1}(L(W_{\tilde{S}},\tilde{S});R)$$

$$\oplus \bigg(\bigoplus_{\substack{T \subset S \\ W_T \text{ is finite} \\ S \setminus \tilde{S} \subset T} \bigoplus_{\neq} \check{H}^{*-1}(L(W_{S \setminus T},S \setminus T);R) \bigg).$$

Definition. A Coxeter system (W, S) is said to be *irreducible* if, for any nonempty and proper subset T of S, $W \neq W_T \times W_{S \setminus T}$.

Let (W, S) be a Coxeter system. There exists a unique decomposition $\{S_1, \ldots, S_r\}$ of S such that $W = W_{S_1} \times \cdots \times W_{S_r}$ and each Coxeter system (W_{S_i}, S_i) is irreducible. Let

$$\tilde{S} := \bigcup \{S_i \mid W_{S_i} \text{ is infinite}\}.$$

Then $W=W_{\tilde{S}}\times W_{S\backslash \tilde{S}}$ and $W_{S\backslash \tilde{S}}$ is finite.

Remark.

$$\dim_R \partial \Sigma(W,S) = \sup\{i \mid \check{H}^i(\partial \Sigma(W,S);R) \neq 0\}$$

$$= \sup\{i \mid \check{H}^i(L(W_{S\backslash T},S \setminus T);R) \neq 0$$
for some $T \subset S$ such that W_T is finite}

For every finite simplicial complex K, there exists a right-angled Coxeter system (W, S) such that $L(W, S) = \operatorname{sd} K$.

Example. K =the projective plane. Then

$$\tilde{H}^{i}(L(W,S)) \cong \begin{cases} \mathbb{Z}_{2}, & i=2\\ 0, & i \neq 2 \end{cases}$$

Now $\tilde{S} = S$. For each $T \subset S$ such that $T \neq \emptyset$ and W_T is finite, $L(W_{S \setminus T}, S \setminus T)$ has the same homotopy type as the circle. Hence,

$$\tilde{H}^i(L(W_{S\backslash T}, S \setminus T)) \cong \left\{ egin{array}{ll} \mathbb{Z}, & i=1\\ 0, & i \neq 1 \end{array} \right.$$

Therefore,

$$\check{H}^{i}(\partial\Sigma(W,S)) \cong \begin{cases}
\mathbb{Z}_{2}, & i=2\\ \mathbb{Z} \oplus \mathbb{Z} \oplus \cdots, & i=1,\\ 0, & \text{otherwise}
\end{cases}$$

Thus dim $\partial \Sigma(W, S) = 2$ and dim $\partial \Sigma(W, S) = 1$.

The following problems are open.

Problem (Dranishnikov)

For each $3 \leq n \in \mathbb{N}$, does there exist a Coxeter system (W, S) such that $\dim \partial \Sigma(W, S) = n$ and $\dim_{\mathbb{Q}} \partial \Sigma(W, S) = 1$?

Problem

For each $3 \leq n \in \mathbb{N}$, does there exist a right-angled Coxeter system (W, S) such that dim $\partial \Sigma(W, S) = n$ and dim $\mathbb{Q} \partial \Sigma(W, S) = 1$?

The above problem is equivalent to the following:

Problem

For each $3 \leq n \in \mathbb{N}$, does there exist a flag complex L such that

$$\max\{i \mid \tilde{H}^i(L-\sigma) \neq 0 \text{ for some } \sigma \in L \cup \{\emptyset\}\} = n$$

and

$$\max\{i \mid \tilde{H}^i(L-\sigma;\mathbb{Q}) \neq 0 \text{ for some } \sigma \in L \cup \{\emptyset\}\} = 1?$$

On cohomology

For a flag complex L which is not a cone,

$$\check{H}^i(\partial\Sigma(W,S))\cong \check{H}^i(L)\oplus \left(\bigoplus_{\sigma\in L}\bigoplus_{\mathbb{Z}}\check{H}^i(L-\sigma)\right),$$

where (W, S) is a right-angled Coxeter system such that L(W, S) = L.