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Overview: Definitions

Triangulations:
A 2-dimensional surface can be built by gluing edges of triangles.
Similarly, a 3-manifold can be built by gluing faces of tetrahedra:

Triangulation of real projective space RP3
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Overview: Definitions

Minimal Triangulations:
Let M be some 3-manifold. There are many different
triangulations that represent M.
A minimal triangulation is a triangulation of M that uses as few
tetrahedra as possible.

Examples:
Real projective space RP3: 2 tetrahedra (from previous slide)
Non-orientable product RP2 × S1: 3 tetrahedra (below)

Smallest closed hyperbolic 3-manifold (v = 0.943): 9 tetrahedra

Benjamin Burton (RMIT) Theorems, Algorithms and Brute Force November 2005 4 / 21



Overview: Definitions

Why minimal triangulations?
Many algorithms in 3-manifold topology are very slow (exponential
in the number of tetrahedra)
⇒ Small triangulations are essential
Minimal triangulations often have very nice combinatorial
structures
⇒ Useful for studying the underlying 3-manifold
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Overview: A Census of 3-Manifolds

The problem:
List all 3-manifolds that can be built using ≤ n tetrahedra
(like making tables of knots)
List all minimal triangulations of these 3-manifolds

Why?
Useful for seeking patterns and testing hypotheses
Required for proving that triangulations are minimal
Helps with recognising 3-manifolds that you have obtained
through other calculations

Difficulties:
Computations are very, very slow
Not easy to recognise the 3-manifolds from the triangulations
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Overview: Previous Census Work

Early work:
1989: Cusped hyperbolic manifolds (Hildebrand & Weeks,
extended in 1999 with Callahan, data shipped with SnapPea)
1994: Closed hyperbolic manifolds (Hodgson & Weeks, interested
in smallest hyperbolic volume)

Closed orientable manifolds:
1998: ≤ 6 tetrahedra (Matveev)
2001: ≤ 9 tetrahedra (Martelli & Petronio)
2005: ≤ 10 tetrahedra (Matveev / Martelli)

Closed non-orientable manifolds:
2002: ≤ 6 tetrahedra (Amendola & Martelli)
2003: ≤ 7 tetrahedra (Amendola & Martelli / Burton)
2005: ≤ 9 tetrahedra (Burton)
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Overview: The Plan

We need to avoid a very large, very slow computer search.
Theorems: Use mathematical theorems to find constraints that
minimal triangulations must satisfy;
Algorithms: Combine these theorems with techniques from
computer science to improve the efficiency of the search;
Brute force: Throw it all at a very big computer.

And wait. . . ²J30
10-tetrahedron non-orientable census: 32

3 years CPU time
In reality, ∼ 2 months real time on a large cluster
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Theorems: Conditions for Minimality

All results refer to triangulations that are:
closed
minimal
either orientable or non-orientable
built from ≥ 3 tetrahedra (avoid small special cases)
represent irreducible and P2-irreducible manifolds

Only some theorems are shown here — more results of a similar
nature can be proven.

More results⇒ faster algorithms!
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Theorems: Face Structures

Watch how tetrahedron faces become wrapped together in the overall
triangulation.

No face has two of its edges joined together to form a cone:

No face has all three edges joined together:
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Theorems: Edge Degrees

The degree of an edge is the number of times it appears as an edge of
a tetrahedron.

No edge has degree 1 or 2.
No edge of degree 3 can meet three different tetrahedra.
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Theorems: Face Pairing Graphs

A face pairing graph shows how tetrahedron faces are joined together:
Graph vertices represent tetrahedra
Graph edges represent gluings between faces
Each graph vertex has degree four

Example:
2-tetrahedron triangulation of the product S2 × S1:

Corresponding face pairing graph:
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Theorems: Face Pairing Graphs

No face pairing graph can contain any of the following structures:

If a face pairing graph contains the following structure, the
corresponding tetrahedra are joined to form a layered solid torus:

Benjamin Burton (RMIT) Theorems, Algorithms and Brute Force November 2005 13 / 21



Algorithms: Overall Structure

The overall census algorithm is structured as follows:
1 Find all possible face pairing graphs.
2 For each face pairing graph, try all possible rotations and

reflections for joining pairs of faces together:
Six symmetries of the triangle
⇒ six possibilities for each pair of faces
62t total possibilities for each face pairing graph

Part (1) is quite fast. Part (2) is extremely slow.
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Algorithms: Face Pairing Improvements

Use the face pairing graph theorems:
If a graph contains a bad structure, do not process it at all.

∼ 50–60% of graphs contain bad structures
⇒ eliminate ∼ 50–60% of running time
Each time this structure appears in a graph, run through all 2k

layered solid tori instead of all 1
636k possible gluings of faces:

Even better: reduces asymptotic complexity of running time
Overall improvement (6-tetrahedron non-orientable census):

5 weeks→ 15 hours
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Algorithms: Tracking Vertex Links

The neighbourhood of each vertex in the triangulation should be a ball.

Each time we join two faces, calculate new neighbourhoods of the
relevant vertices.

These neighbourhoods will be incomplete, but should be fillable to
make a ball
⇒ neighbourhoods must be orientable
The final triangulation must have only one vertex (Jaco &
Rubinstein / Martelli & Petronio, 2002)
⇒ make sure that no neighbourhoods are filled in completely

before we finish
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Algorithms: Tracking Vertex Links

Difficulty:
Calculating vertex links is slow — we don’t want to do this every
time we join two faces together!

Solution:
Use a modification of the union find algorithm.

Union find is a sophisticated algorithm for finding connected
components in a graph.

Works by reading in one graph edge at a time and keeping an
internal tree structure for each graph component.
When a graph edge joins two components together, the two trees
are merged.
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Algorithms: Tracking Vertex Links

Union find has been modified to:
Allow graph edges to be removed (i.e., allow backtracking in our
topological computer search)
Keep track of useful properties such as orientability of the vertex
neighbourhood, how much of the neighbourhood remains to be
filled in, etc.

A modified union find can also be used to eliminate low-degree edges
and conical faces (see earlier theorems).

Overall improvement (6-tetrahedron non-orientable census):
15 hours→ 11

2 hours using vertex links
15 hours→ 46 seconds using both vertices and edges
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Brute Force

Current non-orientable census running times (hh:mm:ss):

Tetrahedra ≤ 5 6 7 8 9 10
Time 0:02 0:46 21:38 17:44:37 28 days 32

3 years
# Manifolds 0 5 3 10 33 ≤ 87
# Triang.s 0 24 17 59 307 ≤ 983

Code is parallelised to make large cases feasible:
May run on a cluster of machines
Embarrassingly parallel
⇒ k machines means ∼ 1/k running time

Work in progress:
Analysing data from the 10-tetrahedron census
Improving algorithms to make > 10 tetrahedra feasible
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Introducing Regina

All computational work done using Regina.
Software package for 3-manifold topology
Offers full GUI, Python scripting, and command-line tools
Linux-based (Debian, Fedora, Mandrake, SuSE, others)
Reads and writes SnapPea files
Full documentation
Open-source (regina.sourceforge.net)

Computes:
algebraic invariants (π1, H1, Turaev-Viro)
subdivisions, simplifications and decompositions
combinatorial analysis and recognition of structures
normal surfaces and angle structures
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Further Reading

Census results:
B. B., Observations from the 8-tetrahedron non-orientable census,
to appear in Experiment. Math., math.GT/0509345, 2005.

Algorithms:
B. B., Face pairing graphs and 3-manifold enumeration, J. Knot
Theory Ramifications 13 (2004), 1057–1101.

Software:
B. B., Introducing Regina, the 3-manifold topology software,
Experiment. Math. 13 (2004), 267–272.
Regina website, http://regina.sourceforge.net/.

Questions?
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