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Overview: Definitions

Triangulations:
@ A 2-dimensional surface can be built by gluing edges of triangles.
@ Similarly, a 3-manifold can be built by gluing faces of tetrahedra:

Triangulation of real projective space RP3
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Overview: Definitions

Minimal Triangulations:

@ Let M be some 3-manifold. There are many different
triangulations that represent M.

@ A minimal triangulation is a triangulation of M that uses as few
tetrahedra as possible.

Examples:
@ Real projective space RP3: 2 tetrahedra (from previous slide)
@ Non-orientable product RP? x S': 3 tetrahedra (below)

@ Smallest closed hyperbolic 3-manifold (v = 0.943): 9 tetrahedra
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Overview: Definitions

Why minimal triangulations?

@ Many algorithms in 3-manifold topology are very slow (exponential
in the number of tetrahedra)
= Small triangulations are essential

@ Minimal triangulations often have very nice combinatorial

structures
= Useful for studying the underlying 3-manifold
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Overview: A Census of 3-Manifolds

The problem:

@ List all 3-manifolds that can be built using < n tetrahedra
(like making tables of knots)

@ List all minimal triangulations of these 3-manifolds
Why?

@ Useful for seeking patterns and testing hypotheses

@ Required for proving that triangulations are minimal

@ Helps with recognising 3-manifolds that you have obtained
through other calculations

Difficulties:
@ Computations are very, very slow
@ Not easy to recognise the 3-manifolds from the triangulations
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Overview: Previous Census Work

Early work:

@ 1989: Cusped hyperbolic manifolds (Hildebrand & Weeks,
extended in 1999 with Callahan, data shipped with SnapPea)

@ 1994: Closed hyperbolic manifolds (Hodgson & Weeks, interested
in smallest hyperbolic volume)

Closed orientable manifolds:
@ 1998: < 6 tetrahedra (Matveev)
@ 2001: < 9 tetrahedra (Martelli & Petronio)
@ 2005: < 10 tetrahedra (Matveev / Martelli)
Closed non-orientable manifolds:
@ 2002: < 6 tetrahedra (Amendola & Martelli)
@ 2003: < 7 tetrahedra (Amendola & Martelli / Burton)
@ 2005: < 9 tetrahedra (Burton)
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Overview: The Plan

We need to avoid a very large, very slow computer search.
@ Theorems: Use mathematical theorems to find constraints that
minimal triangulations must satisfy;

@ Algorithms: Combine these theorems with techniques from
computer science to improve the efficiency of the search;

@ Brute force: Throw it all at a very big computer.

And wait. .. )

@ 10-tetrahedron non-orientable census: 3% years CPU time
@ In reality, ~ 2 months real time on a large cluster
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Theorems: Conditions for Minimality

All results refer to triangulations that are:
@ closed
@ minimal
@ either orientable or non-orientable
@ built from > 3 tetrahedra (avoid small special cases)
@ represent irreducible and P?-irreducible manifolds

Only some theorems are shown here — more results of a similar
nature can be proven.

More results = faster algorithms!
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Theorems: Face Structures

Watch how tetrahedron faces become wrapped together in the overall
triangulation.

@ No face has two of its edges joined together to form a cone:

AN

@ No face has all three edges joined together:

/N /N
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Theorems: Edge Degrees

The degree of an edge is the number of times it appears as an edge of
a tetrahedron.

@ No edge has degree 1 or 2.
@ No edge of degree 3 can meet three different tetrahedra.
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Theorems: Face Pairing Graphs

A face pairing graph shows how tetrahedron faces are joined together:
@ Graph vertices represent tetrahedra
@ Graph edges represent gluings between faces
@ Each graph vertex has degree four
Example:
@ 2-tetrahedron triangulation of the product S? x S':

@ Corresponding face pairing graph:

Ce )
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Theorems: Face Pairing Graphs

@ No face pairing graph can contain any of the following structures:

@ If a face pairing graph contains the following structure, the
corresponding tetrahedra are joined to form a layered solid torus:
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Algorithms: Overall Structure

The overall census algorithm is structured as follows:

@ Find all possible face pairing graphs.

@ For each face pairing graph, try all possible rotations and
reflections for joining pairs of faces together:
o Six symmetries of the triangle
= six possibilities for each pair of faces
e 62! total possibilities for each face pairing graph

Part (1) is quite fast. Part (2) is extremely slow.
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Algorithms: Face Pairing Improvements

Use the face pairing graph theorems:
@ If a graph contains a bad structure, do not process it at all.

<><><j <

~ 50-60% of graphs contain bad structures
= eliminate ~ 50-60% of running time

@ Each time this structure appears in a graph, run through all 2%
layered solid tori instead of alll %36" possible gluings of faces:

(O e
Even better: reduces asymptotic complexity of running time
Overall improvement (6-tetrahedron non-orientable census):
@ 5 weeks — 15 hours
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Algorithms: Tracking Vertex Links

The neighbourhood of each vertex in the triangulation should be a ball.

BN

Each time we join two faces, calculate new neighbourhoods of the
relevant vertices.

@ These neighbourhoods will be incomplete, but should be fillable to
make a ball

= neighbourhoods must be orientable
@ The final triangulation must have only one vertex (Jaco &
Rubinstein / Martelli & Petronio, 2002)

= make sure that no neighbourhoods are filled in completely
before we finish
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Algorithms: Tracking Vertex Links

Difficulty:
@ Calculating vertex links is slow — we don’t want to do this every
time we join two faces together!
Solution:
@ Use a modification of the union find algorithm.

Union find is a sophisticated algorithm for finding connected
components in a graph.
@ Works by reading in one graph edge at a time and keeping an
internal tree structure for each graph component.
@ When a graph edge joins two components together, the two trees
are merged.
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Algorithms: Tracking Vertex Links

Union find has been modified to:

@ Allow graph edges to be removed (i.e., allow backtracking in our
topological computer search)

@ Keep track of useful properties such as orientability of the vertex
neighbourhood, how much of the neighbourhood remains to be
filled in, etc.

A modified union find can also be used to eliminate low-degree edges
and conical faces (see earlier theorems).

Overall improvement (6-tetrahedron non-orientable census):
@ 15 hours — 1 hours using vertex links
@ 15 hours — 46 seconds using both vertices and edges
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Current non-orientable census running times (hh:mm:ss):

Tetrahedra | <5| 6 | 7 | 8 | 9 | 10
Time 0:02 | 0:46 | 21:38 | 17:44:37 | 28 days 3% years
# Manifolds 0 5 3 10 33 <87
# Triang.s 0 24 17 59 307 <983

Code is parallelised to make large cases feasible:
@ May run on a cluster of machines

@ Embarrassingly parallel
= k machines means ~ 1/k running time

Work in progress:
@ Analysing data from the 10-tetrahedron census
@ Improving algorithms to make > 10 tetrahedra feasible
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Introducing Regina

All computational work done using Regina.
@ Software package for 3-manifold topology
@ Offers full GUI, Python scripting, and command-line tools
@ Linux-based (Debian, Fedora, Mandrake, SuSE, others)
@ Reads and writes SnapPea files
@ Full documentation
@ Open-source (regina.sourceforge.net)

Computes:
@ algebraic invariants (w1, Hy, Turaev-Viro)
@ subdivisions, simplifications and decompositions
@ combinatorial analysis and recognition of structures
@ normal surfaces and angle structures
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Further Reading

Census results:

@ B. B., Observations from the 8-tetrahedron non-orientable census,
to appear in Experiment. Math., math.GT/0509345, 2005.
Algorithms:

@ B. B., Face pairing graphs and 3-manifold enumeration, J. Knot
Theory Ramifications 13 (2004), 1057—-1101.

Software:

@ B. B., Infroducing Regina, the 3-manifold topology software,
Experiment. Math. 13 (2004), 267-272.

@ Reginawebsite, http://regina.sourceforge.net/.

Questions?
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