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Abstract. It is well known that the Petri net reachabilityis equivalent
to the provability for the corresponding sequent of linear logic. It is a
system which has expressive powers of resources, but does not provide a
concept of time to encode timed Petri nets naturally. So we introduce a
resource-conscious and time-dependent system, that is, temporal linear
logic. The aim of the paper is to show the (discrete) timed Petri net
reachability is equivalent to the provability in the subsystem of temporal
linear logic for the corresponding sequent. Our final target is to analyze
the dynamic behavior of timed Petri nets by means of the logic.

1 Introduction

Linear logic which was introduced by Girard in 1987 [3] has been called a re-
source conscious logic. The expressive power is evidenced by some very natural
encodings of computational models such as Petri nets (PN) [7, 15, 8, 10]. Timed
Petri nets (TPN) [2] are place-transition nets enhanced with a definite notion of
time. In this paper, we focus only on discrete time and describe the relationship
between timed Petri nets and logic. Although TPN can be simulated by PN [12],
linear logic does not provide natural encodings of TPN since it lacks a concept
of time. The aim of the paper is to show the equivalence between (discrete)
timed Petri net reachability and the provability for the corresponding sequent in
(the subsystem of) temporal linear logic, which is obtained by introducing “time
expression” to linear logic.

In [4], although an extension of linear logic with certain features of temporal
logic [11] was introduced, it is not enough to represent TPN since it lacks opera-
tors to express the difference between the reusable resources such as transitions
and the anytime-but-once usable resources (which will disappear after they are
used) such as available tokens in TPN. In [14], TPN was considered as a timed
extension to quantales [1] which are called timed R-monoids, and the logic sys-
tem, which has TPN as its models, was introduced. TPN is a sound model of
the logic, which means that if a sequent of the logic system is provable then
the corresponding marking is reachable from the corresponding initial marking
of TPN. But the converse does not hold, that is, it is not a complete model of
the logic. This is because of using non logical axioms in the deduction, which
indicate transitions of TPN.



Our “temporal linear logic” provides a natural encoding of TPN since it
has sufficient modalities to represent resources and time concepts of TPN, and
also satisfies completeness theorem (Theorem 11). This theorem means that the
reachability of TPN is equivalent to the provability of the corresponding sequent.
We obtain the decidability of the reachability problem for TPN by means of
another method different from [12] replacing TPN into PN.

2 Petri Nets and Linear Logic

Let (Pl,Tr, Ar) be a Petri net where Plis a finite set of places, Tr is a finite set
of transitions and Ar indicates weight of arcs. It is known that the reachability
problem for PN is equivalent to the provability problem for the -Horn fragment
of linear logic; [7]

Theorem 1 (Kanovich [7]). For a given Petri net (Pl,Tr, Ar), a marking M
is reachable from a marking My if and only if the following !-Horn sequent

METr — M*

s provable in Linear Logic, where M, M* are corresponding formulas and T'r*
1s a corresponding sequence of formulas. u

Remark. The Horn fragment of linear logic is NP-complete. [5, 6]

3 Timed Petri Nets and Temporal Linear Logic

3.1 Timed Petri Nets
We consider place timed Petri nets in the paper.

Definition2 (Timed Petri Net). A (place) Timed Petri Net (TPN) is a tu-
ple (Pl,Tr, Ar,6), where:

Pl: Finite set of places

Tr: Finite set of transitions (disjoint with P!)

Ar: (Pl x Tr)U (Tr x Pl) — N (Weight of arcs)
f: Pl — N

Here N means the set of natural numbers (including 0). é(p) > 0 indicates the
waiting time of the pending token to be an active token in p € PL. L]

A multiset of places (i.e. marking) is not sufficient to represent a state of
TPN. We need not only the informations of available tokens (i.e. active tokens),
but also tokens to be usable in future (i.e. pending tokens).

Definition3 (State). A state of TPN is a infinite sequence of multisets of
places (Mo, M1, My, ...) where My, = Mp,41 = ... = 0 for some m > 0. n



In a state S at some instant, My, which is called a timed marking, indicates
active tokens and M; (i > 1) indicates pending tokens which will be active after
1 passage of time.

We will define reachability with respect to states. A reached state is derived
by firing derivation or time derivation.

Definition4 (Derivation). Let S = (Mg, M1, M3,...) be a state at some in-
stant ¢.

firing derivation : We say that a transition 7 is enabled at S if and only if
My C My. Here, M is a multiset of input places to 7. If a transition 7 is
enabled and we fire it at that instant, the reached state at the same instant
t is the state S’ defined by

S = (Mg — My wMF My w M Myw M, ...

Here, M;" indicates a multiset of output places p’s from 7 with 6(p) =i > 0.
& indicates a multiset union. Note that a firing terminates at the instant.
The described derivation is denoted by the notation S[r)S’.
time derivation : The reached state at the instant ¢ + 1 from S is the state S’
defined by
S/ == <M0 L‘!‘JMl,Mg, . >

The described derivation is denoted by the notation S[6)S’. "

We consider TPN in Fig.1. The numbers
beside each place p; indicates f(p;). The state
S = ({p1,p2,p2},0, .. ). The transition 7 is en-
abled at S. We fire it at t = 0, the reached
state Sl = <{p1}, @, {p3,p3},0, .. > at t = 0. Af-
ter 2 passage of time, the reached state Sy =
({p1,p3,p3},0,...) at t = 2. The transition 7 is
enabled at S5 and we fire it at t = 2, the reached P32 t=0
state S" = {{p1,ps}, {p2},0,.. ) at t = 2. Fig.1: Timed Petri net

Now, we define the reachability for TPN with respect to states. For a deriva-
tion sequence ¢ = Ky...kn (n > 0), we use the notation S[o)S’ instead of
S[k1)S1[k2)S2 ... Sn_1[kn)S’, where k; is either 7 € Tr or . Specially, if the

¢
number of § in ¢ is ¢, we use the notation S [¢) S’, which means that S’ will be
2

reached from S after t passage of time. For example, S [715;5T2> S’ for the TPN
in Fig.1.

Definition 5 (Reachable). Let S and S’ be states of a TPN. We say that S’ is
reachable from S, which will be denoted by S’ € [S), iff there exists a derivation
sequence o such that S[o)S’. "

Specially, we say that S’ is strictly reachable from S at the instant ¢, which
will be denoted by S’ € [S);, iff there exists a derivation sequence ¢ such that

S S,



3.2 Temporal Linear Logic

Now, we introduce temporal linear logic which has several kinds of modalities.
Let us A means some resource. Modalities in temporal linear logic express;

OA (anytime A): “A can be used at any time but only once. After use, it dis-
appears 7. Therefore, an active token in p € Pl can be represented by Op.
OA (next A): “A can be used only at the next time. After use, it disappears”.
Therefore, a pending token in p € PI, which will be active after n passage
of time can be represented by O”Op, where O"Op indicates O...O Op.
N —
ntimes
!A (reusable A): “A can be used always. Never disappears”.
That is, A means a reusable resource like in linear logic. This is used for a
transition.

The expressive power of temporal linear logic is helpful to express the states,
transitions and passage of time of timed Petri nets. We will explain it in the
following section.

Definition6 (ITLL). We define a sequent calculus of propositional intuition-
istic temporal linear logic ITLL as a system in Appendix A. u

Remark. Temporal linear logic includes linear logic as a subsystem.

ITLL satisfies the cut elimination theorem, that is, if a sequent I' — C
is provable in ITLL then it is provable in ITLL without (cut) rule. The cut
elimination theorem concludes the subformula property.

ITLL is sound and complete for a temporal phase structure model (which is
similar to the model in [4]).

Let A, B be formulas. The followings are several syntactical remarks on
ITLL.

—19A=A21=A.

— A=A,

— !A — 0OA is provable, but OA —!A is not provable.

0OA — O™ A is provable, but 0" A — OA is not provable (n > 0).
— Neither OA — A nor A — OA are provable.

“A = B” in the list means both A — B and B — A are provable in ITLL.

4 Reachability and Provability

We can encode the reachability problem for TPN into the provability problem
of the corresponding Horn sequent of a Horn-like system HTPN completely.
HTPN is extended without destroying the equivalence to the reachability prob-
lem for TPN in order to associate with temporal linear logic. At the end of
this section, we obtain Theorem 11, which claims that the reachability problem



for TPN 1s equivalent to the provability problem for the Horn fragment of the
subsystem of temporal linear logic.

At first, we define HTLL which include HTPN as a subsystem of it. We
start from a constructive definition. For atomics p, q, ..., a token formula and a
simple product are defined by:

a:x=0p|0a, M:iu=a|Me®M,

respectively. A token in p € Pl can be represented by a token formula, a state
can be represented by a simple product. Let us consider the encoding for TPN
in Fig.1 (See subsection 3.1). For a state S, we denote the corresponding simple
product by S*. In Fig.1, S* = Op; ® Ops ® Ops. The encoding of a transition 7 is
denoted by 7*. 7} = Op; ® Ops @ Ops o0p; @ 020p3 ® 0%0ps, 75 = Op3-o00ps.
In this paper, simple products are denoted by X,Y, 7 M,... Fort >0, a Horn
sequent 1s a sequent of the form

A1 M — 017,

where I' is a set of formulas of the form X —oY and A is a multiset of formulas
of the form X —oY. M will associate with the initial state, Z the goal state,
I" the whole transitions in TPN and A the used transitions for the derivation
sequence.

By a Horn sequent, we can express the statement with respect to the reach-
ability. For the TPN in Fig.1, the statement “S’ is reachable from S after 2
passage of time” 1s represented by the following Horn sequent;

m,75;1®0p; ® Opy @ Opy — 0%(1® Op; @ Ops @ OOpy). (1)

1 in a Horn sequent is a trick to be able to construct the corresponding state
from a formula of the form O"Op. For example, although we can construct the
state ({p2},0,...) from O*(1 ® Op,), we cannot decide the corresponding state
from the form O”Op on the right side of the Horn sequent.

Now, we define HTLL as follows;

Definition 7 (HTLL). Let formulas be of the form X, X —oY, 0" Z, sequents
be the form of Horn sequents. We define HTLL as a system constructed from
Table 1. n

We call the subsystem which is constructed by (Az1), (fire) and (next) only as
HTPN. It is not difficult to show the following lemma.

Lemma8. Let (Pl,Tr, Ar,0) be a timed Petri net and S, S’ states of it. Then
¢

S [o) S for some derivation sequence o if and only if the following sequent
Tr*;1® S* — 0% (1 ® S™)

1s provable in HTPN, where Tr* s a sequence of 7 such that 7 € T'r. L]



x5 x (A

NiogM"@a1®...0ar —» 0'Z

F;A,Y@Al — otz . = T (next)
TAXeoMo0Z (fire) M1 M ® 001 ®...® Oay — Ot Z
3 S a -
provided that X —oY € I. where zM. is of the form Op; ® ... ® Opm,,
each «; is a token formula.

. A X —X .
F;X—OY,X—>Y(A$2)F;—>1(1) IAXRY XY (®)
;A A M — 0O'Z I ALCM 5 X A, X 5017

n (absorb) v n (Hcut)
A M— 07 I Ay, A, M — O 7
provided that A € I where ' C I".

Table 1. Horn temporal linear logic

Lemma 8 claims that we can encode the reachability problem for TPN into the
provability problem of the corresponding Horn sequent of HTPIN completely.

For example, since S [7'1(52(57'2> S’ in Fig.1, the Horn sequent (1) is provable in
HTPN by Lemma 8. In fact, the following is the proof figure;
71,75;1©0p1 ®Ops ® OHpy - 1 ®@Hp; ®Hp3 @ O0py .
1, 75;1® 0p1 ©®Op3 ® Ops — 1 ® Opy @ Ops @ OOpy (fire)
7,731 ® 0p1 ® O0p3 ® O0p3 — O(1 ® Op; ® Ops @ OUp»)
7,751 ®0p; ® 0?0ps ® 0?0ps — 0%(1 ® Op; @ Ops ® Op,)
74,751 ® 0p © Ops ® Opy — 0*(1 ® Op; @ Ops © OOpy)

(next)
(next)

(fire)

Let us consider another Horn sequent with respect to Fig.1,
Tf,ﬂj;l@OQng—)OS(l@ng). (2)

This is provable in HTPN;
m7,75;1®@0ps > 1@ 0py
1, 75;1® OOps — O(1 ® Op»)
77, 75;1®0ps — O(1 ® Ops)
71,75;1® 0Op3 — 0%(1 @ Ups)
71,7531 ® 0%0ps — 0(1 ® Opy)

Suppose S1 = (0,0, {ps},0,...) and Sy = ({p=},0,...). By Lemma 8, S; [3’) Sa

for some o. Furthermore, we can construct ¢ = §d2d from the proof figure.
Lemma 8 can be extended to the following lemma;

Lemma9 (Main lemma). Let (Pl,Tr, Ar,6) be TPN and S,S’ states of it.
Suppose A* is a multiset structured from ™™ € Tr*. If the Horn sequent

Tr*; A* 1® S* — 0'(1® S™)



Reachable | Lemma 9 Lemma 10 ITLL®
TPN — = Provable
HTLL
Lemma 8§ Provable
HTPN |Subsystem
Provable -

Fig.2: llustration of the proof of Theorem 11

¢
is provable in HTLL then there is o such that S [¢) S’ and any T € A has been
really used in o (i.e. Forany Tt € A, 7 € o). n

Proof. (sketch) The claim is shown by induction on the height of the proof of
the Horn sequent. See [7]. (Q.E.D.)

Let ITLL® be a subsystem of ITLL by replacing (— ®) with (= ®)° and
provided that all atomics are of the form Op, where

I'A—-A A B—B
I'N'AA/B— A®B

(= @)°

We can associate HTLL with ITLL® by the following lemma.

Lemma10. Let I'; A, M — O'Z be a Horn sequent. Then I'; A, M — O'7 is
provable in HTLL if and only if 'I'; A, M — O'Z is provable in ITLL®. L]

Proof. Tt is not difficult to show that if I'; A, M — 07 is provable in HTLL
then !, A, M — O'Z is provable in ITLL®.

We sketch the proof of converse. Suppose !, A, M — O'Z is provable in
ITLL? and M = a1 ® ... ® ay,, where each «; indicates a token formula. Then
.,y — O'Z. One can prove the

(Q.E.D.)

there exists some cut free proof of I A oy, ..
claim by the induction on the height of the proof figure.
Now, we obtain the main theorem.

Theorem 11 (Completeness theorem). Let (Pl,Tr, Ar,0) be a timed Petri
net and S, S’ states of it. Then S’ is reachable from S after t passage of time if
and only if the sequent

ITr*,1® S5* — 0 (1 ® S™)
s provable in ITLL®. u
Proof. (See Fig.2)
(Soundness) Suppose !Tr*,1 ® S* — Of(1 ® S’*) is provable in ITLL®. By

t
Lemma 10, Tr*;1® S* — Of(1 ® S*) is provable in HTLL. Then S [o) S’
for some derivation sequence o by Lemma 9.



t
(Completeness) Suppose S [o) S’ for some o. Tr*;1 ® S* — 0O'(1 ® S™) is
provable in HTPN by Lemma 8. Therefore, it is provable in HTLL. By
Lemma 10, !Tr*,1 ® S* — O(1 ® S'*) is provable in ITLL®. (Q.E.D))

Unlike theorem 1, we have to restrict the tensor rule for the equivalence be-
tween the reachability of TPN and the provability of the corresponding sequent of
temporal linear logic. This concludes that the following does not satisfy generally;
if there exists some oy such that Sp[o1)S and o3 such that Sj[o2)S’, then there
exists o such that So W Si[)SWS’. One can deduce ', I'2,04,0B = O(A® B)
from I1,0A — OA and I, 0B — OB in ITLL°. This concludes that if
ITr*1® S; — 0'(1® S*) and !Tr*,1 ® S§ — O'(1 ® S™*) are provable in
ITLL® then !Tr*,1® S @ S§* — O'(1® S* ® S™) is also provable in ITLL®.
We can say that if we match between the passages of time then we can combine
two derivation sequences.

5 The Decidability of the Reachability Problem for
Timed Petri Nets

By the previous section, the strict reachability for timed Petri nets is equivalent
to the provability of the corresponding Horn sequent. In this section, we show the
decidability of the strict reachability problem for timed Petri nets by rewriting
a Horn sequent (Corollary 13).

Let S be the following Horn sequent of HTPN;

rioM -0 (1 Z),

where I is a set of fornlulas of the form X —oY. We rewrite S to obtain the
rewritten Horn sequent §

f; clock® @ M — clock® © Z,
which does not include temporal modalities. The rewriting steps are as follows;

Rewriting steps for a Horn sequent
— Rewriting for M and 7.
1. Each 1 on both sides is removed. We put an atomic clock(®) in front
of M and an atomic clock®) instead of O
2. Each token fomula of the form O*Op in M and Z is rewritten into
an atomic p(*) and p(t+%) respectively.
— Rewriting for I'. The rewriting corresponds to the translation from TPN
structure into PN structure.
1. Each X —oY is rewritten into a series of linear implications of the
forms
clock®™ @ X —oclock™ @ Y,

where 0 < i < t. Each token fomula of the form 0¥Op in X and Y
is rewritten into an atomic pit+*).



2. We add a series of auxiliary linear implications to I'.

a) We add a series of auxiliary linear implications of the forms
Y p
clock) —otmpld) tmpl?) —oclockli+1),

where 0 < j <t —1.
(b) For each pin X and Y, we add a series of auxiliary linear impli-
cations of the form

tmp(j) ®p(.7) —otmp(j) ®p(j+1)
where 0 < j <t —1.

For example, we consider a Horn sequent (1) in section 4 as S. We can rewrite
it into the following Horn sequent as §;

Tr; clock® @ pi* @ pl” @ pi” — clock® @ pi*) @ i) @ pf (3)
where Tr is the following sequence of linear implications;

clock® ®p(1 i) ® pg) ® pg) —oclock™ @ p(1 i) ®ng+2) ® pgi+2),

(i
clock® ®p( D _oclock( i) (z+1)’
clock) —otmpld) | tmpli ) —oclock(j‘i'l),
tmp\) @ pi?) ﬂtmp< e pith,
tmpld) ®p( 9 —otmply) ®P(]+1)
tmp) @ p§i) —otmpW) @ p§*  (0<i<3,0<j<2).

We can obtain the following lemma by replacing (next) rules in the proof
figure of & into (fire) rules with respect to auxiliary linear implications in I

Lemma12. For a given Horn sequent S of HTPN, suppose S is the rewritten
Horn sequent. Then we can say that S is provable in HTPN if and only if S is
provable in HTPN without (next) rule. n

For the proof figure of (1) on page 6, the corresponding proof figure of (3) without
(next) rule is as follows;

fr; clock? @ ng) & pgf) & pgs) — clock? @ pg 2) ®pg 2) ® p( )

Tr; clock®) ®p(12) ® pgz) ® pgz) — clock?) ®p(1 ) (2) ® pg )

ffr; clock™) ®p(11) ® pgz) ® pgz) — clock?) ®p(1 ) ( ) ® pg )

3((fire)3 times)

— 2((fire)3 times)
Tr; clock(® @ p(lo) ® pgz) ® pff) — clock® @ p(lz) ® pg) ® p(2 )

fr; clock(® pgo) ® pgo) & pgo) — clock® @ ng) ® pgz) % pgs)

Double lines mean that several inference rules are applied.
Each number 1 -4 in the proof figure means one or several (fire) rules which
correspond to the following linear implications, respectively;



clock® @ pi” @ pi” @ p) —oclock® @ pi” @ p§? @ p.

9 —otmp®, tmp(®) @ p(1 ) —otmp(®) ®p(11)

(0)
(0)

. clock™ —otmp(l) tmp) @ pgl) —otmp() ®p§2), tmpV) —oclock®.
(2)

®p ) “oclock®) ® p(23).

. clock . tmp® —oclock™).

I

. clock

Lemma 12 concludes that the strict reachability problem for timed Petri
nets can be translated into the reachability problem for Petri nets. Since the
reachability problem for Petri nets is decidable [9], we can obtain the following
corollary which claims that the strict reachability problem for timed Petri nets

1s decidable.

Corollary 13 (Decidability of the strict reachability problem).
Let S and S’ be states of a timed Petri net, t € N. We can decide if S" € [S):.

This result is similar to [12, 13].

6 Conclusions and Future Work

We have obtained the result that the reachability problem for TPN is equivalent
to the provability problem for the corresponding sequent of the subsystem of
temporal linear logic. Unlike in Theorem 1, we restrict the ®-rule of temporal
linear logic. It is caused by the difference between markings and states. Although
firing sequences in PN are able to be combined, we have to match between the
time informations of states to combine derivation sequences in TPN.

It is not difficult to show that the sequent !7Tr* 1 ® S* — 0'(1® T ® S™) is
provable in ITLL® if and only if “The state which includes S’ is reachable from
S after ¢ passage of time”.

As compared with [4], we will be able to obtain classical temporal linear logic.
Since we have a fragment <, which means “sometimes”[4], in full fragments of
classical temporal linear logic, it will provide an expressive power such as “The
state is sometimes reachable from the initial state”.

It is known that the reachability problem for PN is decidable [9]. Since TPN
can be translated into PN, the reachability problem for TPN is also decidable
[12, 13]. We can obtain the similar result by logical method.

To use & allows us to express a token which can be used for a fixed period
of time. For example, p&Op&O?p means that only during two units of passage
of time, we can use the token p. The expressive powers of temporal linear logic
will be helpful to our final target to analyze the dynamic behavior of timed Petri
nets.

Acknowledgements : The author is very grateful for the many helpful
suggestions by Yuzuru Kakuda, Naoyuki Tamura and Joerg Brendle to achieve
this work.



References

1.

2.

10.

11.

12.

13.

14.

15.

C. Brown. Petri nets as quantales. Technical Report ECS-LFCS-89-96, Depart-
ment of Computer Science, University of Edinburgh, November 1989.
C.Ramchandani. Analysis of Asynchronous Concurrent Systems by Timed Petri
Nets, 1974. Project MAC, TR120, MIT.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.
Max Kanovich and Takayasu Ito. Temporal linear logic specifications for concur-
rent processes (extended abstract). In Twelfth Annual IEEE Symposium on Logic
in Computer Science, pages 48-57, Warsaw, Poland, 29 June-2 July 1997. [EEE
Computer Society Press.

. Max I. Kanovich. The Horn fragment of linear logic is NP-complete. ITLI Pre-

publication Series X-91-14, University of Amsterdam, 1991.

Max 1. Kanovich. Horn programming in linear logic is NP-complete. In Seventh
Annual Symposium on Logic in Computer Science, pages 200-210, Santa Cruz,
California, June 1992. IEEE Computer Society Press.

Max I. Kanovich. Linear logic as a logic of computations. Annals of Pure and
Applied Logic, 67(1-3):183-212, 1994. Also in Logic at Tver ’92, Sokal, Russia,
July 1992.

. J. Lilius. High-level nets and linear logic. In K. Jensen, editor, Proceedings of the

International Conference on Applications and Theory of Petri Nets, pages 310-327,
Sheffield, United Kingdom, June 1992. Springer-Verlag LNCS 616.

E. W. Mayr. An algorithm for the general Petri net reachability problem. In Proc.
of the 13th Annual ACM Symp. on Theory of Computing, pages 238-246, 1981.
Second Edition: STAM J. Comput. Vol. 13, No. 3, Pages: 441-460, August 1984.
J. Meseguer and U. Montanari. Petri nets are monoids, 1990. INFORMATION
AND COMPUTATION, 88:105-155.

Amir Pnueli. The temporal logic of programs. In 18-th Annual Symposium on the
Foundations of Computer Science, pages 4657, 1977.

V. Valero Ruiz, D. de Frutos Escrig, and F. Cuartero Gémez. Simulation of timed
Petri nets by ordinary Petri nets and applications to decidability of the timed
reachability problem and other related problems. In Proceedings of the Fourth
International Workshop on Petri Nets and Performance Models (PNPM91), pages
154-163, December 2-5 1991.

V. Valero Ruiz, D. de Frutos Escrig, and F. Cuartero Gémez. Decidability of the
strict reachability problem for TPN’s with rational and real durations. In 5th
International Workshop on Petri Nets and Performance Models, pages 56—65,19.—
22, Toulouse (F), October 1993.

Makoto Tanabe. Timed Petri nets and temporal linear logic. Lecture Notes in
Computer Science, 1248:156-174, June 1997. 18th International Conference on
Application and Theory of Petri Nets, Toulouse, France, June 1997.

U.Engberg and G. Winskel. Linear logic on Petri nets. LNCS 803, pages 176—
229, Jun 1993. In A Decade of Concurrency, Reflections and Perspectives, REX
School /Symposium.



A Syntax for Intuitionistic Temporal Linear Logic

Roman capitals A, B, ... stand for formulas. The connectives of propositional
temporal linear logic are:

— the multiplicatives A® B, A —-B,1;
— the additives A&B,A® B, T,0;

— the exponentials ' A;

— the temporal modalities A, OA.

Greek capitals ') IT, ... stand for sequents, which are multisets of formulas, so

that exchange is implicit. ITLL is defined as follows;

Identity and Cut rule:
I'=D D I—=C

PEY A I —C (cut)
Propositional Rules :
ABTI'>C : ' A II>B
AoB T SC @) ThHsAgB (O
AT'—C . B, I'—>C .I'>A I'ssB .
BTl sc 8N aprse 2T o aes 08
Al'—-C B, I'>C I =S A . I > B .
A6BToC O T5aes OO TS ass (792
I'sA BIl=C _ AT =B .
ABTIISc (°7) TS Ao (7™
Constants :
I'—>C \ \ \
7501 57U 07 T

Exponential Rules :

AF%C(,)TAA

I=>sC ( )!A,!A,F—>C’
1A, D= C Y 0 1A ’

1
CYaTrse AT > C

(e)

Modality Rules :

AT = C

1,00 — A WO E A
AT 5C

il el e S NN o
o 504 O Yiraroz5o0a ©

0—)

Table 2. propositional intuitionistic linear logic ITLL

This article was processed using the IATRX macro package with LLNCS style



